2 resultados para Glutamate

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visceral pain is a debilitating symptom of irritable bowel syndrome (IBS), a disorder affecting up to 30% of adults. A better understanding of the mechanisms underlying visceral hypersensitivity may facilitate development of more targeted therapies, improving the quality of life of these individuals. The studies performed in this thesis were designed to investigate important factors of visceral pain, including early-life manipulations, genetic predisposition and sex hormones. Maternal separation (MS) consistently reproduces visceral hypersensitivity and altered anxiety-like behaviours in rats, symptoms associated with IBS. It has been found that 5-HT2B receptor antagonism blocks visceral pain but no difference in relative 5-HT2B receptor mRNA expression was found in hippocampus, amygdala and colon. The neuronal activation patterns of prefrontal cortex and amygdala of MS rats were then investigated. MS animals are characterised by differential activation of the prefrontal cortex (anterior cingulate cortex (ACC), infralibic cortex, prelimbic cortex) as well as the central nucleus of the amygdala (CeA). Genetic factors also contribute to pain syndromes such as IBS. We utilised the Wistar Kyoto (WKY) rat, a stress-sensitive strain, as an animal model of brain-gut axis dysfunction. WKY rats have a lower expression of the glutamate transporter EAAT2 and mGlu4 receptor in the ACC. Another early-life factor that can increase susceptibility to functional gastrointestinal symptoms later life is disruption of the gut microbiota, thus early-life antibiotic treatment was used to assess this effect. Antibiotic treatment induced visceral hypersensitivity in adulthood and may be related to observed reductions in spinal cord alpha-2A adrenoreceptor (adra2A) mRNA. Lastly, we investigated sex differences in visceral sensitivity. EAAT1 & 2 mRNA levels are lower in females, potentially increasing glutamatergic concentration at the symaptic level. Moreover, NR1 and NR2B subunits mRNA of NMDA receptor were increased in caudal ACC of females. These findings may account for sex differences in visceral sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visceral pain is a debilitating disorder which affects up to 25% of the population at any one time. It is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. Currently the treatment strategies are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. The work presented in this thesis aimed to redress this issue and look in more detail at the molecular mechanisms of visceral pain in preclinical models. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here a mouse model of early-life stress-induced visceral hypersensitivity was validated. Moreover, mouse strain differences were also apparent in visceral sensitivity suggesting a possible genetic component to the underlying pathophysiology. Furthermore, gender and sex hormones were also implicated in stress sensitivity and visceral pain. Using the rat model of maternal separation, some of the epigenetic mechanisms underpinning visceral hypersensitivity, specifically the contribution of histone acetylation were unravelled. Glutamate has been well established in somatic pain processing, however, its contribution to visceral pain has not been extensively characterised. It was found that glutamate uptake is impaired in viscerally hypersensitive animals, an effect which could be reversed by treatment with riluzole, a glutamate uptake activator. Moreover, negative modulation of the metabotropic glutamate (mGlu) receptor 7 was sufficient to reverse visceral hypersensitivity in a stress sensitive rat strain, the Wistar Kyoto rat. Furthermore, toll-like receptor 4 (TLR4) was implicated in chronic stress-induced visceral hypersensitivity. Taken together, these findings have furthered our knowledge of the pathophysiology of visceral pain. In addition, we have identified glutamate transporters, mGlu7 receptor, histone acetylation and TLR4 as novel targets, amenable to pharmacological manipulation for the specific treatment of visceral pain.